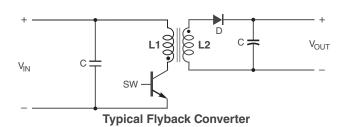
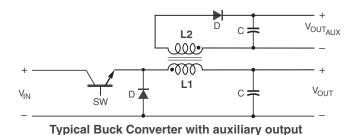
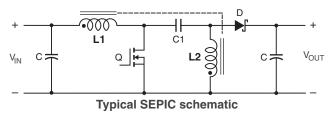
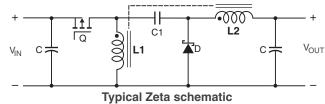

0.118 ±0.003*

Coupled Inductors for Critical Applications MS412PJD






3,00 ±0,08 0.118 ±0.003* 3,00 ±0,08



- Only 1.4 mm high and 3 mm square
- · Ideal for use in flyback, multi-output buck, SEPIC and Zeta applications.
- High inductance, high efficiency and excellent current handling
- Can also be used as two single inductors connected in series or parallel or as a common mode choke.
- The tin-lead (Sn-Pb) termination offers the best possible board adhesion.

† Height dimension is after mounting. For

maximum height dimension before mounting, add 0.006 in / 0,152 mm. Dimensions are in inches

MS412PJD Series Coupled Inductors

				Coupling	Leakage	Isat (A) ⁶			Irms (A)	
Part number ¹	Inductance ² (µH)	DCR max ³ (Ohms)	SRF typ ⁴ (MHz)		L typ⁵ (µH)	10% drop	20% drop	30% drop	both windings7	one winding ⁸
MS412PJD391NSZ	0.39 ±30%	0.071	289	0.89	0.08	3.2	3.3	3.4	1.45	2.05
MS412PJD561MSZ	0.56 ±20%	0.079	235	0.93	0.08	2.7	2.8	2.8	1.37	1.94
MS412PJD102MSZ	1.0 ±20%	0.129	160	0.95	0.09	2.0	2.1	2.2	1.08	1.52
MS412PJD152MSZ	1.5 ±20%	0.204	140	0.96	0.11	1.6	1.7	1.8	0.86	1.20
MS412PJD182MSZ	1.8 ±20%	0.273	135	0.96	0.13	1.5	1.6	1.6	0.78	1.10
MS412PJD222MSZ	2.2 ±20%	0.300	110	0.97	0.14	1.5	1.6	1.6	0.75	1.05
MS412PJD332MSZ	3.3 ±20%	0.337	90	0.98	0.16	1.0	1.1	1.2	0.67	0.94
MS412PJD472MSZ	4.7 ±20%	0.503	79	0.98	0.18	0.86	0.87	0.88	0.54	0.76
MS412PJD682MSZ	6.8 ±20%	0.622	58	0.98	0.22	0.77	0.78	0.79	0.49	0.69
MS412PJD103MSZ	10 ±20%	1.040	48	0.99	0.28	0.58	0.59	0.60	0.38	0.53
MS412PJD153MSZ	15 ±20%	1.420	35	0.99	0.37	0.49	0.50	0.51	0.32	0.46
MS412PJD183MSZ	18 ±20%	1.550	33	0.99	0.42	0.46	0.47	0.48	0.31	0.44
MS412PJD223MSZ	22 ±20%	1.89	30	0.99	0.48	0.42	0.43	0.44	0.28	0.40
MS412PJD333MSZ	33 ±20%	2.84	23	0.99	0.63	0.34	0.35	0.36	0.23	0.32
MS412PJD473MSZ	47 ±20%	4.03	17	0.99	0.81	0.28	0.29	0.30	0.19	0.27
MS412PJD683MSZ	68 ±20%	6.11	14	0.99	1.13	0.24	0.25	0.26	0.16	0.22
MS412PJD104MSZ	100 ±20%	8.54	11	0.99	1.50	0.20	0.21	0.22	0.13	0.19
MS412PJD124MSZ	120 ±20%	9.23	9.0	0.99	1.76	0.19	0.20	0.20	0.13	0.18
MS412PJD154MSZ	150 ±20%	12.40	8.0	0.99	2.22	0.16	0.17	0.18	0.11	0.16
MS412PJD184MSZ	180 ±20%	15.32	7.5	0.99	2.79	0.15	0.16	0.17	0.10	0.14
MS412PJD224MSZ	220 ±20%	18.56	6.0	0.99	3.56	0.13	0.14	0.15	0.09	0.13
MS412PJD334MSZ	330 ±20%	27.70	5.0	0.99	5.18	0.11	0.12	0.12	0.07	0.10

1. When ordering, please specify **screening** code:

MS412PJD34MSZ

Screening: Z = Unscreened

Y = Unscreened (SLDC Option A)

W = Unscreened (SLDC Option B)

H= Group A screening per Coilcraft CP-SA-10001

G= Coilcraft CP-SA-10001 Group A (SLDC Option A)

D= Coilcraft CP-SA-10001 Group A (SLDC Option B)

N= Group A screening per Coilcraft CP-SA-10004 • Screening performed to the document's latest revision.

· Custom screening also available

- 2. Inductance shown for each winding, measured at 100 kHz, 0.1 Vrms, 0 Adc on an Agilent/HP 4284A LCR meter or equivalent. When leads are connected in parallel, inductance is the same value. When leads are connected in series, inductance is four times the value.
- 3. DCR is for each winding. When leads are connected in parallel, DCR is half the value. When leads are connected in series, DCR is twice the
- 4. SRF measured using an Agilent/HP 4191A or equivalent. When leads are connected in parallel, SRF is the same value.
- 5. Leakage Inductance is for L1 and is measured with L2 shorted
- 6. DC current at 25°C that causes the specified inductance drop from its value without current. It is the sum of the current flowing in both windings.
- 7. Equal current when applied to each winding simultaneously that causes a 40°C temperature rise from 25°C ambient. This information is for reference only and does not represent absolute maximum ratings.
- 8. Maximum current when applied to one winding that causes a 40°C temperature rise from 25°C ambient. This information is for reference only and does not represent absolute maximum ratings.
- 9. Electrical specifications at 25°C.

Refer to Doc 639 "Selecting Coupled Inductors for SEPIC Applications." Refer to Doc 362 "Soldering Surface Mount Components" before soldering.

Coupled Inductor Core and Winding Loss Calculator

This web-based utility allows you to enter frequency, peak-to-peak (ripple) current, and Irms current to predict temperature rise and overall losses, including core loss.

Core material Ferrite

Core and winding loss

Weight 48 - 66 mg

Terminations Tin-lead (63/37) over tin over nickel

Ambient temperature -55°C to +105°C with Irms current

Maximum part temperature +155°C (ambient + temp rise).

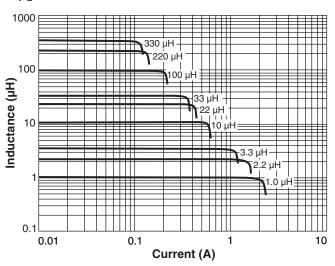
Storage temperature Component: -55°C to +155°C.

Packaging: -55°C to +80°C

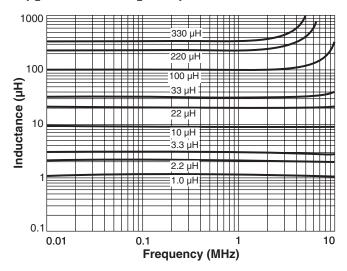
Winding to winding isolation 100 V

Resistance to soldering heat Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles

Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)


Packaging 1000/7" reel Plastic tape: 12 mm wide, 0.26 mm thick, 8 mm pocket spacing, 1.65 mm pocket depth

Recommended pick and place nozzle OD: 3 mm; ID: ≤1.5 mm


Document MS661-2 Revised 04/25/23

MS412PJD Series Coupled Inductors

Typical L vs Current

Typical L vs Frequency

Document MS661-3 Revised 04/25/23